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Abstract. Recent analytical and numerical results for the three-loop polarization function allow to present
a phenomenological analysis of the cross section for massive quark production in electron positron an-
nihilation to order α2

s. Numerical predictions based on fixed order perturbation theory are presented for
charm and bottom production above 5 and 11.5 GeV, respectively. The contribution from these energy
regions to α(M2

Z), the running QED coupling constant at scale MZ , are given. The dominant terms close
to threshold, i.e. in an expansion for small quark velocity β, are presented

1 Introduction

The total cross section for e+e− annihilation into hadrons,
σhad, constitutes one of the most basic quantities of
hadronic physics. It can be determined experimentally and
calculated theoretically with high precision. It allows for a
fundamental test of QCD and for a precise determination
of its parameters, the strong coupling constant, and the
quark masses. In addition, it provides the decisive input
for an evaluation of the running QED coupling at high
energies and for the hadronic contribution to the lepton
anomalous magnetic moment. Perturbative QCD is ex-
pected to provide reliable predictions in the continuum,
i.e. one or two GeV above the respective quark threshold
and the respective resonance region. Calculations in the
massless limit have been performed several years ago in
O(α2

s) [1] and O(α3
s) [2] which we also refer to as NLO

and NNLO (for a review see [3]). The effect of nonvanish-
ing quark masses, MQ, has been taken into account during
the last years with the help of various quite different ap-
proaches: a large number of terms has been calculated in
an expansion in M2

Q/s [4,5], where
√

s is the centre of mass
energy, and a subset of the diagrams has been evaluated
analytically [6,7]. Alternatively, the real and imaginary
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part of the polarization function Π(q2) has been obtained
by deriving analytical results for the expansions around
q2 = 0, for the limit M2

Q/q2 � 1 and around q2 = 4M2
Q

and by using the analyticity of Π(q2) to reconstruct the
full function numerically [8]. The polarization function to
order α2

s for massive quarks is therefore under full control.
The previous papers were devoted to the technical as-

pects of the calculation and to systematic tests and cross
checks. The present paper will be devoted to a compilation
of the results in a simple and coherent form and to various
phenomenological applications. It contains, in addition,
the contribution from the double bubble diagram with a
massive quark in the internal and the external fermion
loop. In the phenomenological applications the dominant
terms of order α3

s in the massless approximation [2] plus
M2

Q/s terms [9] will be included. This approach allows for
a smooth interpolation between the high energy region
where the formulae are accurate to NNLO order and the
region closer to threshold where the results are valid to
NLO order only.

The paper is organized as follows: a comprehensive ac-
count of all NLO results is presented in Sect. 2 for the
sample case of the charm cross section. In Sect. 3 predic-
tions for charm, bottom and top quark cross sections will
be given. The sensitivity of the results towards a variation
of the input parameters and the renormalization scale is
investigated. In view of their stability in the regions away
from the resonances the results for the cross sections can
be used to predict the contributions of the charm and
bottom continuum to the running of the QED coupling.
A detailed study of this effect is performed in Sect. 4.
The NLO perturbative results expanded for small veloc-
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ities are an essential input for a calculation of the cross
section very close to threshold, i.e. for energies compara-
ble to or smaller than the Rydberg energy. In this region
a resummation of leading and subleading terms of order
παs/β, where β =

√
1 − 4M2

Q/s is the velocity of the pro-
duced quarks, is required. Although we do not perform
this resummation of singular terms in this paper, the es-
sential ingredients from perturbation theory are presented
in Sect. 5. Section 6 contains the summary and conclusion.

2 Predictions of order α2
s

In a first step the theoretical results shall be recalled which
are required for the complete prediction of order α2

s valid
for energies sufficiently above the heavy quark threshold.
The crucial ingredient in the present approach is the ex-
istence of a hierarchy of the quark masses. To be specific,
let us consider the region above the charm and below the
bottom threshold – the generalization to the other cases
of interest being obvious. The energy is chosen sufficiently
large, say above 5 GeV, to avoid the complications in the
regime very close to the cc̄ threshold (see Sect. 5). The u,
d and s quark masses are neglected. Virtual bottom ef-
fects are treated through an expansion in s/(4M2

b ). This
approximation is adequate in the full energy region under
consideration, even for s/(4M2

b ) → 1 [6]. We are mainly
interested in the region where

√
s and Mc are of compara-

ble magnitude. It is thus convenient to identify the quark
mass with the pole mass, a convention adopted through-
out this paper.

In order α2
s the contributions from different quark

species to the vector current correlator can be distinguished
and thus added incoherently – only “non–singlet terms”
are present in this order. The singlet contribution, which
starts in order α3

s, has been calculated for massless quarks
and is small [2]. In the following we shall first recall the
contributions arising from the electromagnetic current cou-
pled to the light u, d and s quarks, and subsequently the
charm contribution – the main subject of this work. We
would like to stress, that the formulae, with the obvious
replacements, are equally well applicable for bb̄ or tt̄ pro-
duction above their respective thresholds (see Sect. 3).

1. The sum of the absorptive parts of one-, two- and three-
loop diagrams with massless degrees of freedom (quarks
or gluons) is given by [1]:

Rlight(s) = 3
∑

i=u,d,s

Q2
i

{
1 +

α
(4)
s (µ2)

π
+

(
α

(4)
s (µ2)

π

)2

×
[
365
24

− 11 ζ(3) + n`

(
−11

12
+

2
3

ζ(3)
)

+
(

−11
4

+
1
6
n`

)
ln

s

µ2

]}
, (1)

where ζ(3) ≈ 1.2020569 and n` = nf − 1 is the number of
massless quarks. The MS coupling α

(4)
s is to be evaluated

m2

m1

Fig. 1. Fermionic double bubble diagrams with generic masses
m1 and m2

at the scale µ2. Anticipating our strategy to include the
dominant α3

s terms in the high energy region, the evolution
of the strong coupling is governed by the three-loop beta
function with nf = n` + 1 active flavours, where nf = 4
is chosen for the sample case of charm quark production.

2. Charm quarks can be produced through the splitting
of gluons, which in turn are radiated off u, d or s quarks.
The analytic result for this cross section can be found
in [6], the corresponding virtual corrections to light quark
pair production were obtained earlier in [10] in the on-
shell renormalization scheme. The sum gives rise to the
following “double bubble” contribution (see Fig. 1 with
m1 = 0, m2 = Mc):

TCF R(2)
qc = 3

∑
i=u,d,s

Q2
i

2
3

(
ρV (0, M2

c , s) + ρR(0, M2
c , s)

+
1
4

ln
M2

c

µ2

)
. (2)

The functions ρV (0, M2
c , s) and ρR(0, M2

c , s) are given
in [6]. The combination on the right hand side of (2) is
well approximated by the leading terms in the high energy
limit. This is demonstrated in Fig. 2, where the combi-
nation

(
ρV (0, M2

c , s) + ρR(0, M2
c , s) + 1

4 ln M2
c

s

)
is shown,

together with the leading terms of the high energy approx-
imation (µ2 = s)

ρV (0, M2
c , s) + ρR(0, M2

c , s) +
1
4

ln
M2

c

s

M2
c /s→0−→

ζ(3) − 11
8

+
M4

c

s2

(
−3

2
ln

M2
c

s
− 6 ζ(3) +

13
2

)

+O
(

M6
c

s3

)
. (3)

Note that the absence of M2
c terms could be inferred from

general renormalization group considerations [9].

3. Double bubble diagrams with external u, d, s (or c)
and internal b quarks decouple in the limit s/(4M2

b ) � 1.
For vanishing external quark mass an analytic result is
available [10], closely related to ρV (0, M2

c , s) given above.
It is well approximated by the leading term in the s/M2

b
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Fig. 2. The function
(
ρV (0, M2

c , s) + ρR(0, M2
c , s) + 1

4 ln M2
c

s

)
as described in the text. Solid line: exact result; dash-dotted
line: constant and quadratic terms only; dashed line: including
terms up to order M4

c /s2 corrections (from [6]). The scale
µ2 = s has been adopted

expansion [11,12] – even up to s = 4M2
b :

TCF δR
(2)
qb = 3

∑
i=u,d,s

Q2
i

s

4M2
b

[
8

135
ln

M2
b

s
+

176
675

]
. (4)

These terms are numerically small.

The combination of all terms proportional to∑
i=u,d,s Q2

i thus reads

Ruds(s) = Rlight +

(
α

(4)
s (µ2)

π

)2

TCF

×
(
R(2)

qc (s) + δR
(2)
qb (s)

)
. (5)

Ruds is separately renormalization group invariant and ap-
proaches Rlight|n`→nf

in the limit M2
c � s � M2

b .

Let us now proceed to the contributions arising from
charm quarks coupled to the electromagnetic current.
They will be cast into the form

Rc = Q2
c

(
R(0)

c +
α

(4)
s (µ2)

π
CF R(1)

c

+

(
α

(4)
s (µ2)

π

)2

R(2)
c


 . (6)

The lowest order terms are well known [13] and read

R(0)
c = 3 β

3 − β2

2
, R(1)

c = 3 ρ(1), (7)

where

ρ(1) =

(
3 − β2

) (
1 + β2

)
2

[
2 Li2(p) + Li2(p2)

+ ln p
(
2 ln(1 − p) + ln(1 + p)

)]

− β (3 − β2)
(
2 ln(1 − p) + ln(1 + p)

)
− (1 − β)

(
33 − 39 β − 17 β2 + 7 β3

)
16

ln p

+
3 β

(
5 − 3 β2

)
8

, (8)

with

p =
1 − β

1 + β
, β =

√
1 − 4M2

c /s (9)

and Lin(p) is the polylogarithmic function. In the limit
β → 0 ρ(1) behaves as follows:

ρ(1) β→0−→ 9
2
ζ(2) − 6β + 3ζ(2)β2 + O(β3). (10)

with ζ(2) = π2/6. In order α2
s a variety of diagrams has

to be considered.

4. The essential ingredients for an evaluation of the double
bubble diagram with two charm quark loops (see Fig. 1
with m1 = m2 = Mc) can be found in [7]. The virtual
corrections to the cc̄ vertex contribute for

√
s > 2Mc and

are known analytically [7]. The final state with four charm
(anti–) quarks is strongly suppressed close to its thresh-
old at 4Mc ≈ 7 GeV. The rate is given in terms of a
two dimensional integral to be evaluated numerically. The
combined contribution is thus written as

T CF R(2)
cc = 3

(
2
3

ρV (M2
c , M2

c , s) +
2
3

ρR(M2
c , M2

c , s)

+
1
6

ln
M2

c

µ2

4
3

ρ(1)
)

(11)

where

ρV (M2
c , M2

c , s) =
1
6

[
3 + 10β2 − 5β4

24
ln3 p

+
−3 + 40β2 + 16β4 − 15β6

12β3 ln2 p

+
(−18 + 234β2 + 167β4 − 118β6

18β2

+
−3 − 10β2 + 5β4

2
ζ(2)

)
ln p

+
−9 + 510β2 − 118β4

9β

+β (−27 + 5β2) ζ(2)

]
(12)

and

ρR(M2
c , M2

c , s) =
1
3

∫ (1−2Mc/
√

s)2

4M2
c /s

dy

×
∫ (1−√

y)2

4M2
c /s

dz

z

(
1 +

2M2
c

sz

)

×
√

1 − 4M2
c

sz
F(y, z) , (13)
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with

F(y, z) :=
8M4

c

s2 + 4M2
c

s (1 − y + z) − (1 − y + z)2 − 2(1 + z)y
1 − y + z

· ln
1 − y + z −

√
1 − 4M2

c

sy Λ1/2(1, y, z)

1 − y + z +
√

1 − 4M2
c

sy Λ1/2(1, y, z)
(14)

−
√

1 − 4M2
c

sy
Λ1/2(1, y, z)

×

1 +

16M4
c

s2 + 8M2
c

s + 4
(
1 + 2M2

c

s

)
z

(1 − y + z)2 −
(
1 − 4M2

c

sy

)
Λ(1, y, z)


 ,

Λ(1, y, z) := 1 + y2 + z2 − 2(y + z + yz) . (15)

Note that ρR(M2
c , M2

c , s) vanishes for s → 16M2
c . The

function ρV (M2
c , M2

c , s) vanishes for s → 4M2
c and ρ(1)

approaches the constant 3π2/4 in the same limit. Both
are zero below 4M2

c . For small β one obtains:

ρV (M2
c , M2

c , s)
β→0−→

(
22
3

− 4ζ(2)
)

β

+
(

−245
54

+
8
3
ζ(2)

)
β3 + O(β5) . (16)

R
(2)
cc is shown in Fig. 3 as a function of M2

c /s in the
range from 0 to 1/4. The contribution from four parti-
cle production ρR(M2

c , M2
c , s) and the virtual correction

ρV (M2
c , M2

c , s) + 1
3ρ(1) ln M2

c

s are displayed separately as
dashed and dotted lines, respectively, their sum is shown
as a solid line. In the high energy limit the sum approaches
(for µ2 = s) a constant value:

ρV (M2
c , M2

c , s) + ρR(M2
c , M2

c , s) +
1
3
ρ(1) ln

M2
c

s

M2
c /s→0−→

ζ(3) − 11
8

+ O
(

M2
c

s

)
. (17)

Figure 3 demonstrates that for energies far above the four
particle threshold, i.e. for

√
s � 4Mc, real and virtual

contributions cancel to a large extent. For smaller ener-
gies, however, the (negative) virtual corrections become
increasingly more important as the energy decreases down
to the two particle threshold.

The contributions from charm quarks coupled to the
external current with internal massless quark or gluon
lines are significantly more important. Their treatment
is the main subject of this paper. Very close to threshold
the Coulomb singularity has to be incorporated and the
definition of the coupling has to be scrutinized. However,
in a first step, the energy region will be considered where
mass terms are important but Coulomb resummation is
not yet required.

-4

-2

0

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25

Mc
2 /s

ρR(Mc
2,Mc

2,s)

ρV(Mc
2,Mc

2,s)+1/3ρ(1)ln(M c
2/µ2)

sum

Fig. 3. Second order contributions from double bubble di-
agrams with massive internal and external quarks of the
same mass as a function of M2

c /s. Dashed line: the real con-
tribution ρR(M2

c , M2
c , s); dotted line: the virtual correction

ρV (M2
c , M2

c , s) + 1
3ρ(1) ln M2

c
µ2 for µ2 = s; solid line: the sum

of both

5. Let us start with double bubble diagrams with light
internal quark loops (see Fig. 1 with m1 = Mc, m2 = 0).
In the previous cases, (2) and (11) with massive internal
quark loops, the rates for real and virtual radiation could
be given separately and no mass singularity was present.
This differs from the case with vanishing internal quark
mass: quadratic and linear mass logarithms arise in the
individual cuts which can be cancelled by combining real
and virtual emission and by adopting the MS definition
of the coupling constant. The analytical result has been
obtained in [7] (see also [14]). For completeness we recall
the result for n` light quark species:

n` T CF R(2)
cq = 3

2
3

n`

(
− 1

3

[
ln

µ2

s
+

5
3

− ln 4
]

ρ(1)

+δ(2)

)
, (18)

where ρ(1) is given in (8) and

δ(2) = −
(
3 − β2

) (
1 + β2

)
6

·
{

Li3(p) − 2 Li3(1 − p) − 3 Li3(p2) − 4 Li3
( p

1 + p

)

− 5 Li3(1 − p2) +
11
2

ζ(3)

+ Li2(p) ln
(4
(
1 − β2

)
β4

)
+ 2 Li2(p2) ln

(1 − β2

2 β2

)

+ 2 ζ(2)
[

ln p − ln
(1 − β2

4 β

)]

− 1
6

ln
(1 + β

2

)[
36 ln 2 ln p − 44 ln2 p

+ 49 ln p ln
(1 − β2

4

)
+ ln2

(1 − β2

4

)]
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Fig. 4. Gluonic double bubble diagrams where the external
photon is coupled to a heavy quark and the emitted gluon splits
into a gluon loop. The diagrams for the ghost particles which
also have to be taken into account, are not depicted

− 1
2

ln p lnβ

[
36 ln 2 + 21 ln p + 16 lnβ

− 22 ln(1 − β2)
]}

+
1
24

{
(15 − 6 β2 − β4)

(
Li2(p) + Li2(p2)

)
+ 3 (7 − 22 β2 + 7 β4) Li2(p)
− (1 − β) (51 − 45 β − 27 β2 + 5 β3) ζ(2)

+
(1 + β)

β

(−9 + 33 β − 9 β2 − 15 β3 + 4 β4) ln2 p

+
[

(33 + 22 β2 − 7 β4) ln 2

− 10 (3 − β2) (1 + β2) lnβ

− (15 − 22 β2 + 3 β4) ln
(1 − β2

4 β2

)]
ln p

+ 2 β (3 − β2) ln
(4
(
1 − β2

)
β4

)

×
[

lnβ − 3 ln
(1 − β2

4 β

)]

+
237 − 96 β + 62 β2 + 32 β3 − 59 β4

4
ln p

− 16 β (3 − β2) ln
(1 + β

4

)
− 2 β (39 − 17 β2) ln

(1 − β2

2 β2

)

− β
(
75 − 29 β2

)
2

}
. (19)

For small velocities δ(2) is given by:

δ(2) β→0−→ 3ζ(2) ln
β

2
+
(

−3
2

+ 8 ln 2
)

β

+2ζ(2)
(

ln
β

2
− 2
)

β2 + O(β3) . (20)

6. Diagrams with massive quarks and purely gluonic inter-
nal lines have been evaluated in [8] through a combination

of analytical and numerical methods. The decomposition
of the result according to the colour structure will be im-
portant for the discussion in Sect. 5 below. Terms pro-
portional to C2

F with a threshold singularity proportional
to (παs)2/β are present in abelian and nonabelian theo-
ries as well, whereas terms proportional to CF CA with a
logarithmic threshold singularity are characteristic for the
nonabelian structure of the theory, with a behaviour sim-
ilar to the CF Tn` term. This leads to the decomposition

R(2)
c = C2

F R
(2)
A + CF CAR

(2)
NA + TCF n`R

(2)
cq

+TCF R(2)
cc + TCF δR

(2)
cb , (21)

where δR
(2)
cb is the contribution with an internal b quark

loop obtained in analogy to (4).
The following approximations have been derived in [8]:

R
(2)
A =

(1 − β2)4

β

3π4

8
− 12 ρ(1) + β

2619
64

− β3 2061
64

+
81
8
(
1 − β2) ln p − 198

(
M2

c

s

)3/2 (
β4 − 2β2)6

+100 p3/2(1 − p)
(
2.08 − 1.57 p + 0.405 p2) , (22)

R
(2)
NA = R(2)

g

∣∣∣
ξ=4

+ β
351
32

− β3 297
32

−18
(

M2
c

s

)3/2 (
β4 − 2β2)4

+50 p3/2(1 − p)
(
1.41 − 1.24 p + 0.96 p2) , (23)

where p = (1 − β)/(1 + β). R
(2)
g |ξ=4 is the contribution

from gluonic double bubble diagrams (see Fig. 4) for the
special choice of the gauge parameter ξ = 4 and reads [15]

R(2)
g

∣∣∣
ξ=4

=
(

11
4

ln
µ2

4s
+

31
12

)
ρ(1) − 33

4
δ(2) , (24)

with ρ(1) and δ(2) given in (8) and (19), respectively. The
first lines of (22) and (23) consist of the exactly known
high energy and threshold contributions, the second and
third lines represent a numerically small reminder.

3 Cross section for the heavy quark
production

The collection of the results presented in the previous sec-
tion provides all tools necessary for a complete descrip-
tion of the cross section in NLO, including charm, bottom
and top mass terms. This allows for the prediction of the
charm, bottom and top cross sections in the regions where
quark masses cannot be neglected but where the resum-
mation of Coulomb terms, characteristic for the regime
very close to threshold, is not yet necessary, see the dis-
cussion below. As stated above, the terms proportional
to Q2

c and
∑

i=u,d,s Q2
i are invariant under renormaliza-

tion group transformations separately, and only terms pro-
portional to Q2

c will be considered in the following. Mu-
tatis mutandis the same formulae are applicable to bottom
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Rc

√s (GeV)

1

1.2

1.4

1.6

1.8

2

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

Fig. 5. The functions Rc, Rb and Rt in NLO plus dominant
NNLO terms versus

√
s for three different scales, µ2 = M2

Q

(dashed), µ2 = (2MQ)2 (solid) and µ2 = s (dotted curves). For
comparison, also shown are the Born (wide dots) and O(αs)
results (µ2 = (2MQ)2, dash-dotted)

quark production. For top quarks only the piece induced
by the electromagnetic current will be considered, the ax-
ial part has been calculated in [16,14,17].

Fixed order perturbation theory is inapplicable very
close to the production threshold, in the region where
αs/β is of order one or larger. In this region terms propor-
tional to (αs/β)n have to be resummed. However, it will
be demonstrated in Sect. 5 that the first three terms in the
perturbative expansion provide a good description down
to fairly small values of β. Specifically, the relative devi-
ation amounts to 0.9/1.7/3.3% for CF παs/β = 2/2.5/π,
respectively. These values lie well within the radius of con-
vergence CF παs/β < 2π of the resummed series. Taking
the requirement CF παs/β < 2 as a guiding principle and
incorporating the running of the coupling constant one
would admit the strictly perturbative, fixed order treat-

ment down to energy values which are 1 GeV above the
nominal threshold for bottom quarks and even less for
charm quarks. However, since the perturbative treatment
can only be applied beyond the highest cc̄ and bb̄ bound
states, we take 5 GeV for charm and 11.5 GeV for bottom
quarks as lowest centre of mass energy values. For top, on
the other hand, the limit CF παs/β < 2 corresponds to
energies about 12 GeV above 2Mt.

The compensation between phase space suppression
and Coulomb enhancement leads to a fairly flat energy
dependence of R(s) even relatively close to threshold (see
Fig. 5). In [4,5] it has been demonstrated for O(αs) and
O(α2

s), respectively, that this behaviour is well approxi-
mated by the first terms in the large momentum expan-
sion. Assuming that the same line of reasoning is applica-
ble also in order α3

s, the dominant NNLO corrections can
be incorporated [2,9,18]:

R(3)
c,ns = 3

{
− 6.637 + 17.296 ln

µ2

s
+ 7.563 ln2 µ2

s

+ nf

(
−1.200 − 2.088 ln

µ2

s
− 0.917 ln2 µ2

s

)

+ n2
f

(
−0.005 + 0.038 ln

µ2

s
+ 0.028 ln2 µ2

s

)

+
M2

c

s

[
347.168 − 378.000 ln

µ2

M2
c

− 9.000 ln2 µ2

M2
c

+ 974.250 ln
µ2

s

− 114.000 ln
µ2

M2
c

ln
µ2

s
+ 213.750 ln2 µ2

s

+ nf

(
−67.619 + 17.333 ln

µ2

M2
c

+ 2.000 ln2 µ2

M2
c

− 82.167 ln
µ2

s

+ 4.000 ln
µ2

M2
c

ln
µ2

s
− 17.000 ln2 µ2

s

)

+ n2
f

(
1.218 + 1.444 ln

µ2

s

+ 0.333 ln2 µ2

s

)]}
. (25)

Inclusion of these terms will lead to the correct NNLO
predictions for larger energies, say above 7 or 8 GeV, al-
lowing at the same time for a smooth transition to NLO
accuracy for lower energies. The singlet terms proportional
to (

∑
Qi)2 are small [2] and have been neglected in (25).

In total one thus finds:

Rc = Q2
c


R(0)

c +
α

(4)
s (µ2)

π
CF R(1)

c +

(
α

(4)
s (µ2)

π

)2

R(2)
c

+

(
α

(4)
s (µ2)

π

)3

R(3)
c,ns


 , (26)
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Fig. 6. Variation of α
(5)
s (M2

Z) a and the quark masses b. In a the solid, dashed and dotted curves correspond to α
(5)
s (M2

Z) =
0.118, 0.115 and 0.121, respectively. In Figs. b for the solid curves (Mc,Mb,Mt)=(1.6, 4.7, 175) GeV is chosen. The dashed
curves correspond to the upper ((1.8, 5.0, 180) GeV) and the dotted curves to the lower limits ((1.4, 4.4, 170) GeV). The scale
µ2 = (2MQ)2 has been adopted

where R
(3)
c,ns denotes the non-singlet contribution at O(α3

s).
In Fig. 5 the predictions are shown for the charm, bot-
tom and top cross sections in the energy regions discussed
above. For the value of the coupling α

(5)
s (M2

Z) = 0.118
has been adopted and the on-shell quark masses have
been chosen to be Mc = 1.6 GeV, Mb = 4.7 GeV and
Mt = 175 GeV. (Note that a complete prediction of the
top quark cross section would require the incorporation of
the axial contribution.) In order to study the sensitivity
of the results to the renormalization scale, µ2 has been
chosen as M2

Q (Q = c, b, t; dashed curves), 4M2
Q (solid

curves) and s (dotted curves). The results are relatively
stable against this variation. This agreement, despite the
appearance of large logarithms ln s/M2

Q for µ2 = M2
Q, is a

consequence of the NNLO approximation valid at the high

energy end. The largest sensitivity towards the choice of µ2

is observed in the intermediate and low energy region for
charm production, where αs is large and the corrections
are enhanced by large contributions proportional to lnβ
and 1/β. For comparison Rc, Rb and Rt are also plotted
in the Born (wide dots) and leading order approximation
(dash-dotted, µ2 = (2MQ)2). The cubic corrections in αs

are rather small so that we do not show the NLO correc-
tions separately. For the case of the charm and bottom
quark the “remainder” of the Coulomb singularity is still
visible and both Rc and Rb raise for

√
s → 5 GeV and√

s → 11.5 GeV, respectively. For the top quark, however,
even 10 GeV above the nominal pair production threshold
a singular behaviour is not visible and Rt decreases as

√
s

approaches 360 GeV.
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Table 1. Numerical values for R(s) and Rc(s). The scale µ2 = s has been chosen. For
the evaluation of Rc(s) (26) has been used. R(s) is the proper sum of Ruds(s) (5) and
Rc(s) with Mb = 4.7 GeV

α
(5)
s (M2

Z) Mc
√

s 5 6 7 8 9 9.98 10.52
(GeV) (GeV)

0.115 1.4 Rc(s) 1.505 1.467 1.447 1.434 1.426 1.420 1.418
0.115 1.4 R(s) 3.641 3.596 3.570 3.554 3.542 3.534 3.530
0.115 1.6 Rc(s) 1.538 1.486 1.459 1.443 1.432 1.425 1.422
0.115 1.6 R(s) 3.674 3.615 3.582 3.562 3.548 3.538 3.534
0.115 1.8 Rc(s) 1.575 1.507 1.473 1.452 1.439 1.431 1.427
0.115 1.8 R(s) 3.711 3.636 3.596 3.572 3.556 3.544 3.539
0.118 1.4 Rc(s) 1.516 1.473 1.451 1.438 1.430 1.424 1.421
0.118 1.4 R(s) 3.659 3.608 3.581 3.563 3.550 3.541 3.537
0.118 1.6 Rc(s) 1.553 1.494 1.465 1.447 1.436 1.429 1.425
0.118 1.6 R(s) 3.696 3.629 3.594 3.572 3.557 3.546 3.542
0.118 1.8 Rc(s) 1.598 1.519 1.480 1.458 1.444 1.434 1.430
0.118 1.8 R(s) 3.741 3.654 3.609 3.583 3.565 3.552 3.547
0.121 1.4 Rc(s) 1.527 1.480 1.456 1.442 1.433 1.427 1.424
0.121 1.4 R(s) 3.677 3.621 3.591 3.572 3.559 3.549 3.545
0.121 1.6 Rc(s) 1.569 1.503 1.471 1.452 1.440 1.432 1.429
0.121 1.6 R(s) 3.719 3.644 3.605 3.582 3.566 3.554 3.549
0.121 1.8 Rc(s) 1.622 1.531 1.488 1.463 1.448 1.438 1.434
0.121 1.8 R(s) 3.771 3.672 3.623 3.593 3.574 3.561 3.555

√s (GeV)

R(s)

0

1

2

3

4

10

Fig. 7. R(s) plotted against
√

s. The scale µ2 = s has been
adopted. The dashed curves correspond to the values Mc =
1.8 GeV, Mb = 5.0 GeV and αs(M2

Z) = 0.121, whereas for
the solid curves Mc = 1.4 GeV, Mb = 4.4 GeV and αs(M2

Z) =
0.115 is used. The dotted lines show a recent compilation of the
available experimental data. The central curves correspond to
the mean values, upper and lower curves indicate the combined
statistical and systematical errors

To study the dependence on the input parameters MQ

and α
(5)
s (M2

Z), we adopt the choice µ2 = 4M2
Q and vary

α
(5)
s (M2

Z) within the currently quoted range ±0.03 (see
Fig. 6a) and the quark masses in the range as indicated
in Fig. 6b. These changes indicate the present uncertain-
ties. For Rc and Rb the higher values of the quark masses
also lead to larger cross sections – a consequence of the
enhanced Coulomb forces for fixed

√
s. For the top quark

the phase space effect is still dominant and the cross sec-
tion for the choice Mt = 180 GeV is smaller than for
Mt = 170 GeV.

It is now possible to give a prediction for R(s) in the
energy range above

√
s ≈ 2 GeV with the exception of

small windows of 1 to 2 GeV above the thresholds for
open charm and bottom production, respectively. Below
the charm meson threshold at

√
s = 2MD the charm quark

is treated as heavy and (1) and (4) are used with n` = 3,
and with α

(4)
s and Mb replaced by α

(3)
s and Mc, respec-

tively. For 5 GeV ∼<
√

s ∼< 10.5 GeV (5) and (21) are di-
rectly applicable with nf = n` + 1 = 4. For the case with
external charm and internal bottom quark an expression
analogue to (4) is used. Above the bottom threshold the
sum over i in (1) and (2) includes also the charm contribu-
tion and consequently n` = 4 has to be chosen, α

(4)
s and

Mc have to be replaced by α
(5)
s and Mb. The dominant

charm mass terms are included through the leading terms
in the M2

c /s approximation. The quadratic charm mass
corrections of order α3

s are given in (25). The correspond-
ing terms up to order α2

s read as follows [19]:

δR
(0+1+2)
M2

c
= 3Q2

c

M2
c

s

[
12

α
(5)
s (µ2)

π
+

(
α

(5)
s (µ2)

π

)2

×
(

189
2

− 24 ln
µ2

M2
c

− 57 ln
s

µ2

+nf

(
−13

3
+ 2 ln

s

µ2

))]
. (27)

In addition the term

3
M2

c

s
(−7.877 + 0.350nf ) (28)



K.G. Chetyrkin et al.: Massive quark production in electron positron annihilation to order α2
s 145

Table 2. Numerical values for R(s) and Rb(s). The scale µ2 = s has been
chosen. For the evaluation of Rb(s) (26) with obvious modifications has been
used. R(s) is the proper sum of Rudsc(s) (obtained from (5)) where in addition
charm mass effects of order M2

c /s have been included ((27) and (28)) and Rb(s)
(Mc = 1.6 GeV)

α
(5)
s (M2

Z) Mb

√
s 11.5 12 13 14 15 40

(GeV) (GeV)
0.115 4.4 Rb(s) 0.372 0.371 0.368 0.366 0.364 0.349
0.115 4.4 R(s) 3.899 3.895 3.888 3.881 3.876 3.827
0.115 4.7 Rb(s) 0.372 0.371 0.369 0.367 0.365 0.349
0.115 4.7 R(s) 3.899 3.895 3.889 3.882 3.877 3.827
0.115 5.0 Rb(s) 0.370 0.370 0.369 0.368 0.366 0.350
0.115 5.0 R(s) 3.897 3.894 3.889 3.883 3.878 3.827
0.118 4.4 Rb(s) 0.376 0.374 0.371 0.368 0.365 0.350
0.118 4.4 R(s) 3.911 3.906 3.897 3.890 3.884 3.832
0.118 4.7 Rb(s) 0.377 0.375 0.372 0.370 0.367 0.350
0.118 4.7 R(s) 3.911 3.907 3.899 3.891 3.885 3.832
0.118 5.0 Rb(s) 0.377 0.376 0.373 0.371 0.368 0.350
0.118 5.0 R(s) 3.911 3.907 3.900 3.893 3.887 3.832
0.121 4.4 Rb(s) 0.381 0.378 0.374 0.370 0.367 0.350
0.121 4.4 R(s) 3.922 3.917 3.907 3.899 3.892 3.837
0.121 4.7 Rb(s) 0.383 0.380 0.376 0.372 0.369 0.350
0.121 4.7 R(s) 3.924 3.919 3.909 3.901 3.894 3.837
0.121 5.0 Rb(s) 0.384 0.382 0.377 0.374 0.371 0.351
0.121 5.0 R(s) 3.926 3.920 3.911 3.903 3.896 3.837

Table 3. Numerical values for Rc(s) for different choices of√
s and µ. The values α

(5)
s (M2

Z) = 0.118, Mc = 1.6 GeV and
Mb = 4.7 GeV have been chosen

µ
√

s 5 6 7 8 9 9.98 10.52
(GeV)

Mc Rc(s) 1.514 1.437 1.409 1.400 1.397 1.398 1.399
2Mc Rc(s) 1.553 1.484 1.450 1.432 1.421 1.414 1.411√

s Rc(s) 1.553 1.494 1.465 1.447 1.436 1.429 1.425
2
√

s Rc(s) 1.541 1.493 1.466 1.449 1.438 1.430 1.427

Table 4. Numerical values for Rb(s) for different choices of√
s and µ. The values α

(5)
s (M2

Z) = 0.118, Mc = 1.6 GeV and
Mb = 4.7 GeV have been chosen

µ
√

s 11.5 12 13 14 15 40
(GeV)

Mb Rb(s) 0.386 0.381 0.375 0.370 0.366 0.349
2Mb Rb(s) 0.379 0.377 0.373 0.370 0.367 0.349√

s Rb(s) 0.377 0.375 0.372 0.370 0.367 0.350
2
√

s Rb(s) 0.370 0.370 0.369 0.368 0.366 0.350

which comes from the expansion in M2
c /s of diagrams with

internal charm loops in bb̄ production [9,18] has to be
added to R

(3)
b,ns.

In Fig. 7 R(s) is plotted versus
√

s for the three en-
ergy intervals. Solid and dashed curves show our predic-
tion from perturbative QCD, where the extreme values
from the variation of α

(5)
s (M2

Z) and the masses are con-
sidered and the scale µ2 = s has been adopted. For com-

parison we also plot a recent compilation of the available
experimental data [20] from the inclusive measurements of
R. The central dotted curves correspond to the mean val-
ues, upper and lower dotted curves indicate the combined
statistical and systematical errors.

In Tables 1 and 2 numerical values are listed for the en-
ergy range between the charm and bottom threshold and
above the bottom threshold, respectively. For complete-
ness the terms of order α3

s to Rlight are also taken into
account. They are obtained from (25) neglecting the mass
corrections with nf = 4 (Table 1) and nf = 5 (Table 2),
respectively. In Tables 3 and 4 the dependence of Rc and
Rb on the renormalization scale µ is displayed with MQ

and αs fixed to their central values.
It is evident that the uncertainties in the prediction

are far below the experimental errors in this “low” energy
region. These results could therefore be used to fit the cur-
rently available data and to allow for an improved input
into the analysis of the running electromagnetic coupling
constant α.

4 Hadronic vacuum polarization and the
running electroweak coupling

One of the important ingredients of electroweak precision
tests is the effect of the hadronic vacuum polarization on
the running of the electromagnetic coupling. Using a dis-
persion relation, it is expressed [21] through R(s)

∆α
(5)
had(M2

Z) = −αM2
Z

3π
Re
∫ ∞

4m2
π

ds
R(s)

s (s − M2
Z − iε)

(29)
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Table 5. Contributions to ∆α
(5)
had(M2

Z) × 104 for different energy regions, quark masses and α
(5)
s (M2

Z).
The scale µ2 = s has been adopted. Below the charm threshold the value Mc = 1.6 GeV is chosen. In the
energy ranges 3.73− 5.00 GeV and 10.52− 11.50 GeV for R(s) the formulae valid below the corresponding
quark threshold have been used

α
(5)
s (M2

Z) 0.115 0.118 0.121
Energy range
2.00 − 2.50 GeV 7.54 7.58 7.62
2.50 − 3.00 GeV 6.12 6.15 6.18
3.00 − 3.73 GeV 7.27 7.30 7.33
Mc (GeV) 1.4 1.6 1.8 1.4 1.6 1.8 1.4 1.6 1.8
Energy range
3.73 − 5.00 GeV 9.73 9.74 9.74 9.77 9.77 9.77 9.80 9.80 9.80
(without cc̄)
5.00 − 5.50 GeV 5.37 5.41 5.46 5.40 5.44 5.50 5.42 5.47 5.54
5.50 − 6.00 GeV 4.88 4.91 4.94 4.89 4.93 4.97 4.91 4.95 4.99
6.00 − 9.46 GeV 25.30 25.37 25.46 25.37 25.45 25.55 25.44 25.53 25.63
9.46 − 10.52 GeV 5.88 5.89 5.90 5.90 5.90 5.91 5.91 5.92 5.93
5.50 − 10.52 GeV 36.06 36.17 36.30 36.16 36.28 36.43 36.26 36.39 36.55
Mb (GeV) 4.4 4.7 5.0 4.4 4.7 5.0 4.4 4.7 5.0
Energy range
10.52 − 11.50 GeV 4.94 4.94 4.95 4.95 4.95 4.96 4.96 4.96 4.97
(without bb̄)
11.50 − 12.00 GeV 2.61 2.61 2.61 2.62 2.62 2.62 2.63 2.63 2.63
12.00 − 12.50 GeV 2.51 2.51 2.51 2.51 2.51 2.51 2.52 2.52 2.52
12.50 − 13.00 GeV 2.41 2.41 2.41 2.42 2.42 2.42 2.42 2.42 2.42
13.00 − 40.00 GeV 72.78 72.80 72.81 72.90 72.92 72.94 73.03 73.04 73.06
40.00 − ∞ GeV 42.61 42.61 42.62 42.67 42.67 42.67 42.73 42.73 42.73
12.00 − ∞ GeV 120.31 120.33 120.34 120.50 120.52 120.54 120.70 120.72 120.74

and contributes together with the well known leptonic con-
tributions to the running of the electromagnetic coupling

α(s) =
α(0)

1 − ∆α
(5)
had(s) − ∆αlep(s)

, (30)

where α(0) = 1/137.0359895 is the fine structure constant.
Top quark contributions are not considered in this context.
Also QED corrections are not included as they are of the
order of a few per mill only.

The detailed phenomenological analyses in [22,23] have
made use of the full set of data obtained by many differ-
ent experiments for energies from just above the two pion
threshold up to 40 GeV. Although different prescriptions
for the interpolation have been used in the different pa-
pers, the most recent results are in fair agreement. In the
high energy region (typically above 40 GeV [22]) the pre-
diction for R(s) based on perturbative QCD with massless
quarks has been employed. A significant part of the final
error originates from the region where perturbation the-
ory should be reasonably valid: the light quark continuum,
say above 2 GeV, the continuum above the charmonium
resonances and below the bottom threshold and the region
between 12 and 40 GeV, i.e. above the Upsilon resonances.
In view of the results presented in the previous chapters
one may employ perturbative QCD also in these regions.
This might lead to a reduction of the error, albeit at the
price of a more pronounced dependence on perturbative
QCD. (For early studies along this line see also [22,23].)

Table 6. Contribution to ∆α
(5)
had(M2

Z) × 104 for different en-
ergy regions and different choices of µ for the most heavy
quark contribution (for the remaining light quarks the scale
µ2 = s has been adopted). The values α

(5)
s (M2

Z) = 0.118,
Mc = 1.6 GeV and Mb = 4.7 GeV have been chosen

µ Mc 2Mc
√

s 2
√

s
Energy range
5.00 − 5.50 GeV 5.37 5.44 5.44 5.43
5.50 − 6.00 GeV 4.85 4.92 4.93 4.92
6.00 − 9.46 GeV 25.10 25.35 25.45 25.46
9.46 − 10.52 GeV 5.85 5.88 5.90 5.91
5.50 − 10.52 GeV 35.80 36.14 36.28 36.28
µ Mb 2Mb

√
s 2

√
s

Energy range
11.50 − 12.00 GeV 2.62 2.62 2.62 2.62
12.00 − 12.50 GeV 2.52 2.51 2.51 2.51
12.50 − 13.00 GeV 2.42 2.42 2.42 2.41
13.00 − 40.00 GeV 72.89 72.91 72.92 72.92
40.00 − ∞ GeV 42.63 42.65 42.67 42.67
12.00 − ∞ GeV 120.45 120.49 120.52 120.52

In Tables 5 and 6 the contributions to ∆α
(5)
had are dis-

played for a variety of input parameters and renormal-
ization scales. Since the validity of our perturbative treat-
ment is more doubtful just above the respective charm and
bottom thresholds, the contributions from a variety of in-
tervals are displayed separately. Once improved data are
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Table 7. Comparison of ∆α
(5)
had(M2

Z) × 104 evaluated in this
work with the data analyzed in [22]. The scale µ2 = s has been
chosen for the respective light quark contributions and varied
in the range between M2

Q and s for the most heavy quark. The
errors arise from the variation of Mc, Mb and α

(5)
s (M2

Z) (see
Table 5)

Energy range this work Ref. [22]
5.00 − 9.46 GeV (35.32 − 35.81) ± 0.4 32.63

12.00 − 40.00 GeV (77.82 − 77.84) ± 0.2 79.22

available, these theoretical numbers could be replaced by
more precise experimental ones. In Table 7 our results are
compared to the analysis of [22] for two energy ranges. For
the lower energy interval from 5.00–9.46 GeV our QCD
prediction for ∆α

(5)
had is bigger than the value obtained by

including experimental data by about 9%. In contrast, for
the energy interval from 12 − 40 GeV, perturbative QCD
gives a value slightly smaller than the one obtained from
integrating the experimental R(s) values. This behaviour
is already clear from Fig. 7, where we indicate the range
of experimental data in comparison to R(s) from pertur-
bative QCD.

If one subtracts the narrow Upsilon resonances, QCD
can be applied even up to the threshold for B meson
production. In fact, recent experimental investigations at
10.52 GeV [24] are nicely consistent with perturbative
QCD. The additional contributions from the continuum
cross section in the intervals between 3.73 GeV and 5.00
GeV (without cc̄) and between 9.46 GeV and 10.52 GeV
(without bb̄) are also listed in Table 5. For the perturba-
tive contributions through the range from

√
s = 3 GeV

to ∞ without charmonium and open charm contributions
below 5 GeV and Υ and open bottom contributions below
11.5 GeV one finds

∆α
(5)
had|pert = [(186.27 − 186.87) ± 0.70] × 10−4 (31)

where the range is due to the variation of µ for the heavy
quark contribution and the error due to uncertainties in
the parameters. A more detailed discussion of the impact
of these calculations will be given elsewhere.

5 The region for small β – closer to the
threshold

In the high energy limit, say down to s ≈ 8M2
Q, the cross

section in O(αs) and O(α2
s) is well described by the mass-

less approximation plus the leading terms of the expan-
sion in M2

Q/s up to (M2
Q/s)6 [25,5]. The bulk of the large

logarithms is resummed by taking µ2 = s for the renor-
malization scale and adopting the MS definition of the
running mass. The fixed order result as given above is ev-
idently adequate in the intermediate energy region, with
the requirement that CF παs/β is not yet too large, i.e.
safely away from the threshold regime, where the conven-
tional multi-loop expansion breaks down. Otherwise some

care has to be taken to control the higher order terms pro-
portional to (CF πα/β)n with n ≥ 0. As far as dominant
and subdominant contributions of this sort are concerned,
their structure is understood from nonrelativistic consid-
erations and will be briefly outlined in the following for
the case CF παs ∼< β � 1.

Let us in a first step discuss those terms which are
multiplied by the colour factor CF only and which are rel-
evant for QCD and QED. For the dominant contributions
to the cross section in the nonrelativistic limit, often called
“Sommerfeld factor” in the literature, the leading terms
in an expansion in xS = CF παs/β are given by

Rthr = 3Q2
Q

3
2

βxS

1 − e−xS

= 3Q2
Q

3
2

β

(
1 +

xS

2
+

B1x
2
S

2!
− B2x

4
S

4!
+

B3x
6
S

6!

− . . . + (−1)(n+1) Bnx2n
S

(2n)!
± . . .

)

= 3Q2
Q

3
2

β

(
1 + CF

αs

π

π2

2β

+C2
F

(αs

π

)2 π4

12β2 + . . .

)
, (32)

where Bn are the Bernoulli numbers: B1 = 1/6, B2 =
1/30, B3 = 1/42, . . . . It should be noted that the Som-
merfeld factor is entirely of long-distance origin and pro-
portional to the imaginary part of the nonrelativistic
Green function for the Coulomb potential [26], i.e. gov-
erned by the continuum Coulomb wave function. These
terms are predicted from a consideration, where the QQ̄
production process is decomposed into a short distance
part (to be eventually corrected by short distance QCD
corrections) and a long distance part, which is governed
by the Coulomb wave function, in other words, by the
imaginary part of the nonrelativistic Green function for
the Coulomb potential [27,28].

Resummed and fixed order results have to coincide in
the region of small xS . Thus it is instructive to compare
the Sommerfeld factor and the sum of the first three terms
in the expansion (32) (corresponding to Born, one- and
two-loop contributions, respectively) for various values of
xS which are not too much larger than one. It is remark-
able that the sum of the first three terms in (32) provides
an excellent approximation not only for small values of
xS , but even up to xS = 2 with a relative deviation of less
than 1%. Even for xS = π, corresponding to CF αs/β = 1,
the deviation amounts to 3.3% only.

In addition, based on the consideration that the cross
section for nonrelativistic energies can be decomposed into
long- and short-distance contributions one obtains in QED
an additional correction factor which comes from relativis-
tic momenta involved in the transverse photon exchange.
This factor, which is quite familiar from the single-photon
annihilation contributions to the positronium hyperfine
splitting [29] and from the corrections to quarkonium anni-
hilation through a virtual photon [30], can be derived from
the threshold behaviour of the one-loop corrections [13]. In
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combination one thus anticipates the following behaviour

Rthr = 3Q2
Qβ

3 − β2

2

[
1 +

1
2

CF
αsπ

β

(
1 + β2)

+
1
12

(
CF

αsπ

β

(
1 + β2))2

]

×
(
1 − 4CF

αs

π

)
. (33)

The inclusion of the subleading β2 terms in the combina-
tions (3 − β2) and (1 + β2)/β is suggested from the struc-
ture of (8) for small β. An explicit proof for this structure
at the NLO level can be found in [31]. Their interpretation
as long distance contributions is furthermore motivated
by the appearance of the logarithmic terms with the same
structure in the CF Tn` contributions listed below (see [15]
and (40) of [8]). Even the impact of the running of the
coupling constant can be included in this nonrelativistic
line of reasoning. In QCD the running of αs is induced by
terms proportional to T n` and CA.

For a prediction of the hadronic cross section very close
to threshold, i.e. in the regime β ≤ CF παs, the factoriza-
tion into short- and long-distance contributions analogous
to (33) is desirable, incorporating also the new information
from the NLO calculation. Such an analysis requires the
resummation of long-distance contributions to all orders
and shall not be carried out here1. However, the leading
terms of the perturbative series for small β provide the
basis for such a resummation and will be collected in the
following.

Let us now recapitulate the threshold behaviour of the
various ingredients for Rc:

R(0)
c = 3β

3 − β2

2
, (34)

R(1)
c = R(0)

[
π2(1 + β2)

2β
− 4
]

+ . . . , (35)

R
(2)
A = R(0)

[
1
12

(
π2(1 + β2)

β

)2

− 2
π2(1 + β2)

β

−2
3
π2
(

ln
β

4
+

35
12

)
+

39
4

− ζ(3)
]

+ . . . , (36)

R
(2)
NA = R(0)

[
π2(1 + β2)

β

(
−11

24
ln

4β2M2
c

µ2 +
31
72

)

−11
3

ln
µ2

M2
c

+ c

]
+ . . . , (37)

R(2)
cq = R(0)

[
π2(1 + β2)

β

(
1
6

ln
4β2M2

c

µ2 − 5
18

)

+
4
3

ln
µ2

M2
c

+
11
9

]
+ . . . , (38)

R(2)
cc = R(0)

[
π2

6β
ln

M2
c

µ2 − 4
3

ln
M2

c

µ2 +
44
9

− 8
3
ζ(2)

]
+ . . . . (39)

1 A resummation of this sort for the QED contributions, i.e.
including also the order β terms in (33), can be found in [32]

Terms of order β2 (modulo lnβ) are neglected. The or-
der β terms in (36) are taken from [32]. Subleading terms
in (37), symbolized by c, have not been calculated yet ana-
lytically. Assuming a linear dependence on β, an estimate
for the constant c can be extracted from the numerical
analysis in [8]. Considering the expansion of 11 different
Padé approximations which show a quite stable behaviour
near threshold one obtains

c = 24 ± 5 , (40)

where the error is estimated by taking into account the
variation of the predictions for the constant c from the
different Padé approximations. This numerical result for
c is fairly large, in particular when compared to the cor-
responding constant 11/9 in the CF Tn` term, (38).

In total one thus gets2:

Rc = Q2
c

[
R(0)

c +
α

(4)
s (µ2)

π
CF R(1) +

(
α

(4)
s (µ2)

π

)2

×
(
C2

F R
(2)
A + CF CAR

(2)
NA + TCF n`R

(2)
cq

+TCF R(2)
cc

)]
. (41)

The renormalization group invariance of this result is ap-
parent: the µ dependence of RNA, Rcq, and Rcc prop-
erly compensates the µ dependence of the O(αs) term.
As stated above, the energies considered in this section
will be of order Mc, implying that ln(s/M2

c ) is not a large
quantity. The transition from α

(nf )
s to α

(n`)
s is thus legit-

imate and easily achieved by absorbing the last term of
(11) in the order αs expression.

The logarithmic singularities and the constants in RNA

and Rcq which are leading in β can be absorbed in the
terms of order αs if the MS coupling constant is replaced
by the coupling governing the potential [33]

VQCD(q 2) = −4πCF
αV (q 2)

q 2 , (42)

αV (q 2) = α(n`)
s (µ2)

[
1 +

α
(n`)
s (µ2)

4π

((
11
3

CA − 4
3
Tn`

)

×
(

− ln
q 2

µ2 +
5
3

)
− 8

3
CA

)]
,

with q 2 = β2s. This is apparent once the sum of the Born
cross section plus higher order corrections is rewritten as
follows (with xV = CF παV (β2s) (1 + β2)/β):

Rc = Q2
c R(0)

c

{
1 +

xV

2

−4CF
α

(3)
s (µ2)

π
+

x2
V

12
− 4CF

xV

2
α

(3)
s (µ2)

π

2 The contributions from δR
(2)
cb are suppressed by the power

M2
c /M2

b , not Coulomb enhanced and thus ignored in the fol-
lowing



K.G. Chetyrkin et al.: Massive quark production in electron positron annihilation to order α2
s 149

+

(
α

(3)
s (µ2)

π

)2 [
C2

F

(
−2

3
π2
(

ln
β

4
+

35
12

)

+
39
4

− ζ(3)
)

+CACF

(
−11

3
ln

µ2

M2
c

+ c

)

+CF Tn`

(
4
3

ln
µ2

M2
c

+
11
9

)

+CF T

(
44
9

− 8
3
ζ(2)

)]}
+ . . . . (43)

In the transition from (41) to (43) we have freely dropped
terms of order α3

s. It is evident that the scale in the cor-
rection term from hard transverse gluon exchange propor-
tional to 4CF α

(3)
s (µ2)/π is of order Mc, with µBLM =

e−11/24Mc = 0.63Mc suggested by the BLM prescrip-
tion [34]. However, as noted before, the corresponding con-
stant c ≈ 24 in the non-abelian term is markedly different
from what would be expected from the BLM procedure.

As stated above these results are strictly applicable
in the limit πCF αs ∼< β � 1 only. Nevertheless, (43)
provides an important input for the determination of the
cross section very close to threshold and even for bound
state energies, i.e. for |β| < CF παs, because it contains all
O(α2

s) short-distance effects relevant for the nonrelativis-
tic regime. These short-distance effects, which are specific
for the single-photon annihilation process involving mas-
sive quark-antiquark pairs, are universal for |β| � 1 re-
gardless whether |β| is smaller or larger than CF παs. In
this respect (43) even provides an important result for the
investigation of leptonic decay widths of the Ψ and the Υ
families, and for QCD sum rules for the bb̄ system. A dis-
cussion of the latter subjects, however, is beyond the scope
of this paper.

6 Summary and conclusions

Predictions for the cross section of massive quark produc-
tion in e+e− annihilation are presented which are accurate
to order α2

s. Their range of validity extends from high
energies down close to threshold, i.e. to centre of mass
energies of about 5 GeV, 11.5 GeV and 2Mt + 12 GeV
for charm, bottom and top respectively. Inclusion of the
leading and subleading terms of order α3

s proportional to
M2

Q/s allows to connect smoothly the NNLO prediction at
high energies with the NLO prediction in the intermediate
and “low” energy range. The NLO corrections are sizable
and must be taken into account to achieve a prediction
with an accuracy better than 10%. The stability of the
prediction against variations of the renormalization scale
and of the input values for the quark masses and αs has
been tested. Even fairly extreme assumptions about the
renormalization scale lead to moderate variations in the
case of charm and to negligible variations for the heavier
quarks. The same holds true for the dependence on the

input parameters, the quark masses and the strong cou-
pling constant. Only a change in the charm quark mass
has a clearly visible effect on the cross section. Within the
large experimental errors, theoretical and experimental re-
sults are well consistent. The theoretical results can now
be used to perform an universal fit to the data, includ-
ing the lower energy regions. In view of the sparse data
with large errors in the region from 2 − 3.73 GeV, from
5−10.52 GeV and from 11.5−40 GeV one could also con-
sider to use the predictions based on perturbative QCD to
arrive at a more precise value for the running QED cou-
pling at the Z boson mass. A significant reduction of the
uncertainty could be obtained.
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hauser, Nucl. Phys. B 503 (1997) 339
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